Distribution and Characteristics of Sockeye Salmon Spawning Habitats in the Lake Clark Watershed, Alaska Daniel B. Young¹ ¹National Park Service Port Alsworth, AK 99653 ## Technical Report/NPS/NRWRD/NRTR-2005/338 **AUGUST, 2005** This report constitutes the completion report for PMIS project #54327 funded by the NPS Biological Resources Management Division component of the Natural Resource Challenge National Park Service - Department of the Interior Fort Collins - Denver - Washington United States Department of the Interior • National Park Service ## **CONTENTS** | CONTENTS | iv | |--|-------------| | LIST OF FIGURES | V | | LIST OF TABLES | V | | LIST OF APPENDICES | Vi | | ACKNOWLEDGEMENTS | vi | | EXECUTIVE SUMMARY | 1 | | INTRODUCTION | 2 | | STUDY AREA | 3 | | OBJECTIVES | 4 | | METHODS | 5 | | Spawning distribution Spawning Activity Characteristics of spawning habitat Land ownership and development Subsistence and sport fishing use | 5
5
7 | | RESULTS | 7 | | Spawning distribution Spawning activity Characteristics of Spawning Habitat Land ownership and development Subsistence and sport fishing use | | | LITERATURE CITED | | | APPENDIX | 24 | ## LIST OF FIGURES | | | <u>Page</u> | |--------------|--|---------------| | 1 | Location of Lake Clark and Lake Clark National Park and Preserve relative to Bristol Bay and Cook Inlet, Alaska | 3 | | 2 | Lake Clark watershed in Lake Clark National Park and Preserve | 4 | | 3 | Location of tagging site, telemetry receivers, habitat sampling sites, and tributaries within the Lake Clark watershed | 6 | | 4 | Spawning locations of radio tagged sockeye salmon in the Lake Clark watershed, 2000 and 2001 | 8 | | 5 | Spawning locations relative to land ownership within the Lake Clark | 12 | | 6 | Subsistence fishing locations within the Lake Clark watershed watershed | 16 | | 7 | Sport fishing locations for sockeye salmon within the Lake Clark watershed. | 17 | | | LIST OF TABLES | | | <u>Table</u> | | Page | | 1 | | | | | Tagging and tracking summary for radio tagged adult sockeye salmon in Lake Clark watershed, 2000 and 2001 | | | 2 | | 9 | | 2 | in Lake Clark watershed, 2000 and 2001 | 9 | | | in Lake Clark watershed, 2000 and 2001 Characteristics of spawning habitat in Lake Clark and Tazimina River watersheds, 2000 – 2001 Characteristics of tributary inputs to Lake Clark at time of spawning activity | 9
10
11 | ### **APPENDICES** | <u>Appen</u> | $\underline{\text{dix}}$ | Page | |--------------|--|------| | 1 | Lake Clark and Kvichak River sockeye salmon escapement, in numbers of fish from 1980 – 1984 and 2000 – 2004 | | | 2 | Spawning locations identified by radio telemetry and visual observation in Lake Clark, 2000 and 2001. | 25 | | 3 | Physical properties and water-quality characteristics of streamflow samples collected from the tributaries of Lake Clark, 1999 through 2001 | 27 | | | Inshore commercial catch and escapement of sockeye salmon in the Naknek - Kvichak District by river system, in numbers of fish, Bristol Bay, 1983-2004 | 29 | ## **ACKNOWLEDGEMENTS** This project was a collaborative effort between the United States Geological Survey, Alaska Science Center (USGS ASC) and the National Park Service (NPS), Lake Clark National Park and Preserve. Funding was provided by the NPS Biological Resources Management Division component of the Natural Resource Challenge, U.S. Geological Survey, and U.S. Fish and Wildlife Service. Jim Tilmant (NPS) provided project oversight and helpful editorial comments. Carol Ann Woody (USGS ASC) provided guidance, and encouragement throughout this project. Kristina Ramstad, Ph.D. candidate at the University of Montana, conducted the habitat assessment portion of this study. Helpful editorial comments were made by M. Flora of the NPS Water Resources Division, J. Putera (NPS), and J. Margraf and G. Haas of the University of Alaska Fairbanks. D. Palmer, R. Brown, and E. Spangler provided technical advice and support. A special thanks to all the field assistants who contributed to this project. #### **EXECUTIVE SUMMARY** This report describes findings from a sockeye salmon *Oncorhynchus nerka* radio telemetry and spawning habitat study conducted in the Lake Clark watershed in 2000 and 2001. The primary objectives of this research were 1) to locate and map all major spawning aggregations 2) to determine basic characteristics of spawning habitats, and 3) to determine the distribution of private land uses and subsistence/sport use locations in relation to salmon spawning habitats. To determine spawning distributions, 332 adult sockeye salmon were radio tagged as they entered Lake Clark in 2000 and 2001. Fish were relocated every 1-10 days by boat, plane, or remote solar powered receiver. On average, a radio tagged fish was relocated 12.7 times (range, 3 - 33) and over 3,500 relocations were made. Thirty-five spawning areas were identified, including three sites downstream of the tagging area and five sites identified by visual observation or seining. Eighteen areas were newly identified. Most Lake Clark sockeye salmon spawn in the Tlikakila River, Kijik watershed and along beaches of Lake Clark and Little Lake Clark. Spawning habitat locations were mapped into the Geographic Information System (GIS) for Lake Clark National Park and Preserve. Surprisingly, over 60% of radio tagged salmon spawned in turbid glacial waters; most of which were adjacent to an obvious clear water source. Sockeye salmon spawning habitat was examined from a subset of spawning sites identified by radio telemetry. Basic characteristics including water temperature, turbidity, water depth, channel width, slope, and spawning substrate were collected. Water quality data were collected from the outlet of spawning tributaries during a concurrent study (Brabets 2002). Surface water temperature at spawning habitats ranged from 3.1° Celsius (C) to 12.9° C. Habitats in the glacier-fed Currant Creek and Tlikakila River as well as the spring-fed Priest Rock Creek were cooler than other habitats. Spawning habitats in the upper portion of the watershed were turbid due to runoff from glacial melt. However, the timing of spawning activity in turbid habitats coincided with a dramatic decrease in the concentration of suspended sediment and turbidity. Tributary spawning habitats were in less than one meter of water and spawning channels were on average less than 50 meters in width. Spawning substrate was variable among sites and ranged from habitat dominated by small fines in the headwaters of Tlikakila River to boulder dominated habitat in Little Lake Clark and Sucker Bay Lake. Water quality parameters were all within acceptable range for freshwater aquatic life. Subsistence and sport fishing data were summarized using data collected during previous studies and by National Park Service (NPS) staff. Existing GIS coverages of land ownership were used to compare the location of spawning habitats relative to land ownership. Current development within the Lake Clark watershed was documented by NPS staff. Subsistence fishing for migrating sockeye salmon occurs throughout Lake Clark near seasonal and year-round residences. Residents of Nondalton harvest red fish (spawning sockeye salmon) from spawning areas. Sport harvest occurs at the outlet of Lake Clark, the outlet of Tanalian River, and within the Kijik Lake drainage. Subsistence and sport fishers currently harvest less than one percent of the Lake Clark escapement. About 75% of identified spawning habitats are adjacent to privately owned lands, many slated for development. Proactive measures should be taken to conserve these habitats. #### INTRODUCTION Lake Clark National Park and Preserve (LACL) is located in southcentral/southwest Alaska (Figure 1). Its 4 million acres straddle the Chigmit Mountains, which bridge the Aleutian Range to the southwest and the Alaska Range to the north. Approximately one-third of the park and preserve is located in the Cook Inlet drainage of south-central Alaska and two-thirds is located in the Kvichak, Kuskokwim, and Nushagak River drainages in southwest Alaska. The Kvichak River drainage, which includes the Iliamna Lake (11,137 km²) and Lake Clark watersheds (9,583 km²; Demory et al. 1964), is one of the world's most productive spawning and rearing habitats for sockeye salmon. LACL was established in 1980 as part of the Alaska National Interest Lands Conservation Act (ANILCA). The primary purposes stated in the park's enabling legislation were to "...protect the watershed necessary for the perpetuation of the red [sockeye] salmon fishery in Bristol Bay..." and to "...protect habitats for populations of fish and wildlife..." (ANILCA 1980). Sockeye salmon originating from Lake Clark are important to the economy, culture, and ecosystem of the Bristol Bay region. The Lake Clark system produces an estimated 7-30% of the annual escapement of sockeye salmon to the Kvichak River drainage (Poe and Rogers 1984, Woody 2004) and historically, the Kvichak River drainage has been the largest contributor to the commercial salmon fishery in Bristol Bay. Sockeye salmon are an integral part of local Alaskan native culture (Unrau 1992) and continue to provide subsistence for contemporary users (Alaska Department of Fish and Game 2003). Ecologically, sockeye salmon are an important food resource for over 40 species of mammals and birds (Bennett 1995; Willson 1995; Wilson and Halupka 1995), and represent a
significant source of marine derived nutrients that sustain freshwater ecosystem productivity (Kline et al. 1993). Since 1996, sockeye salmon returns to the Kvichak River and Lake Clark watersheds have declined for unknown reasons. The Kvichak River escapement has failed to meet its minimum escapement goal in four of the last five years (ADFG 2004) and the recent (2000 – 2004) escapement of sockeye salmon to Lake Clark is about 75% lower than was documented from 1980 – 1984 (Appendix 1; Poe and Rogers 1984, Woody 2004). The decline has affected subsistence, commercial, and sport fisheries and caused the governor of Alaska to declare the region an economic disaster area. Depressed sockeye salmon returns concerned fishers and resource managers and initiated new research and monitoring programs in the Lake Clark watershed. The purpose of this report is to summarize findings regarding sockeye salmon spawning habitats located in the Lake Clark watershed. This project represents one facet of integrated salmon ecology/water resource studies that were primarily completed in Lake Clark from 1999 - 2001. Completed projects include: Water quality of the Tlikakila River and five major tributaries to Lake Clark, Lake Clark National Park and Preserve, Alaska, 1999 – 2001 (Brabets 2002), Historical sockeye salmon data of Lake Clark, Alaska (Ramstad 2002), The limnology of Lake Clark, Alaska (Wilkens 2002), Nondalton traditional ecological knowledge of freshwater fish (Stickman et al. 2003), Lake Clark sockeye salmon population assessment (Woody et al. 2003), Founding events influence genetic population structure of sockeye salmon (Oncorhyhnchus Figure 1. Location of Lake Clark and Lake Clark National Park and Preserve relative to Bristol Bay and Cook Inlet, Alaska. nerka) in Lake Clark, Alaska (Ramstad et al. 2004), Population monitoring of Lake Clark and Tazimina River sockeye salmon, Kvichak River watershed, Bristol Bay, Alaska 2000 – 2003 (Woody 2004), and The migration and spawning distribution of sockeye salmon within Lake Clark, Alaska (Young 2004). #### **STUDY AREA** Lake Clark (60° 01 N, 154° 45 W) is the second largest lake (267 km²) in the Kvichak River drainage, and the largest body of water in LACL (Figure 2). It is a long (74 km), narrow (2.5 to 8 km), and deep (mean depth of 103 m) glacial lake with a drainage area of 7,620 km² (Anderson 1969, Brabets 2002). Six primary tributaries including three glacial tributaries, two lake-fed tributaries, and one organically stained tributary feed Lake Clark (Brabets 2002). In addition to the six primary tributaries, numerous small glacial, clear, and organically stained streams flow into Lake Clark. Glaciers, steep mountains, glacial rivers, and high precipitation (average 203 cm annually) characterize the northeast end of the watershed while lowland tundra, small mountains, clear and organically stained streams, and low precipitation (average 64 cm annually) characterize the southwest end (Jones and Fahl 1994, Brabets 2002). Glacial tributaries provide approximately half of Lake Clark's annual water budget and transport large amounts (0.4-1.5 million tons) of suspended sediment into the lake each year (Brabets 2002). During the summer months (June – October) when runoff from glacial tributaries is highest, a turbidity gradient is established along the length of Lake Clark from the turbid (~10 NTUs) northeast to the clear (≤ 2 NTUs) southwest (Brabets 2002, Wilkens 2002). ## **OBJECTIVES** The objectives of this study were to: - 1. Locate and map all major spawning aggregations, including those in glacial regions - 2. Determine basic characteristics of spawning habitats - 3. Determine the distribution of private land uses and subsistence/sport use locations in relation to salmon spawning habitats. Figure 2. Lake Clark watershed in Lake Clark National Park and Preserve, Alaska. #### **METHODS** ### Spawning distribution Radio telemetry was used to determine the spawning distribution of sockeye salmon in the Lake Clark watershed. Methods regarding radio tagging and tracking are briefly summarized below. Please refer to Young (2004) for more detailed description of these methods. Adult sockeye salmon (n = 332; n = 175 in 2000; n = 157 in 2001) were captured with a nylon beach seine as they entered Lake Clark (Figure 3) and radio tagged throughout the run (15 July to 23 August 2000 and 15 July to 9 August 2001). Captures were made during randomly selected fishing sessions in the morning (0800 to 1359) and afternoon (1400 to 1959). Approximately six fish/day were tagged in 2000 and five fish/day were tagged in 2001. To tag a more representative sample of the run in 2001, 10 fish were tagged per day during large migrations as most sockeye salmon migrate into Lake Clark within two weeks (Poe and Rogers 1984, Woody 2004). Large migrations (> 10,000 fish/day) were identified at a counting tower located 10 km downstream of the tagging site (Woody 2004). Tagged fish were tracked every one to ten days using fixed-wing aircraft or boats and 24 hours/day at fixed radio telemetry receivers (Figure 3). During aerial and boat tracking events, a GPS receiver recorded the location of the plane or boat when a tagged fish was detected (latitude and longitude in the North America Dataset 27 datum (NAD27)). Fixed telemetry receivers monitored fish passage within 400 m of the lakeshore based on tests with planted transmitters. Fish were tracked to within 1 km during initial aerial and boat surveys and to within 400 m during spawning surveys, based on field tests with planted transmitters. A fish was considered to be at its spawning location if (i) it was relocated within 400 m of its previous location at least twice within three weeks, (ii) no further migration occurred, and (iii) spawning or spawned out sockeye salmon were observed in that area. A beach seine or tangle net was used to verify spawning in areas with limited visibility (glacially turbid beach and tributary habitats). ## Spawning Activity Sockeye salmon spawning activity within the Lake Clark drainage was assessed by visual observation in clear water habitats and by beach seine or tangle net in waters with limited visibility. Peak spawning was estimated as the time when half of the female salmon were in spawning condition and half were spawned out. #### Characteristics of spawning habitat Basic spawning habitat and water quality data were collected from a subset (n = 9 of 32) of spawning habitats identified in the Lake Clark watershed (K. Ramstad, University of Montana, unpublished data; Figure 3). Sampling sites were chosen to represent a range of habitat types (beach, inlet tributary, outlet tributary; glacial and non-glacial) at varying distances from each other throughout the Lake Clark system. An additional spawning habitat in the Tazimina River drainage (Figure 3) was also surveyed. At each spawning site four transects were established for sampling water quality and physical habitat parameters. Transects at riverine spawning areas were perpendicular to the stream channel covering the wetted width from stream bank to stream bank. Transects at beach spawning sites were perpendicular to the shoreline from wetted shore to a depth of approximately one meter. Surface water temperature and turbidity measurements were collected at the beginning, middle and end of each transect. Surface water temperature (°C) was measured to the nearest degree Celsius with a hand held thermometer. Incubation temperature (°C) was measured intergravel with a StowAway Tidbit temperature logger (Onset Computer Corporation, Bourne, Massachusetts) from 11 October to 30 May. Turbidity (NTU) was measured with a pocket turbidimeter (Hach Company, Loveland, Colorado). Water depth (cm) was measured every meter along the transect using a fiberglass stadia rod. For each spawning site, an average temperature and turbidity value was calculated. The slope of beach spawning habitats was estimated as the distance from the lake shoreline to the offshore extent of the transect divided by water depth. Spawning substrate was estimated using the Wolman pebble-count technique (Wolman 1954, Kondolf 1992). Figure 3. Location of tagging site, telemetry receivers, habitat sampling sites, and tributaries within the Lake Clark watershed. Water quality data (conductivity, pH, dissolved oxygen, suspended sediments, and temperature) and stream discharge (m³/s) were collected monthly from six tributaries of Lake Clark during a concurrent study (see methods in Brabets 2002). Although these water quality samples were not collected at spawning habitats, they provide valuable information regarding general water quality within these tributaries. Land ownership and development Existing GIS coverages of land ownership were used to compare the location of spawning habitats relative to land ownership (National Park Service 2001). Current development within the Lake Clark watershed was documented by NPS staff during 2000 and 2001. Subsistence and sport fishing use Subsistence and sport fishing data were summarized using data collected during previous studies and during interviews with National Park Service (NPS) staff. Subsistence fishing areas were identified during Traditional Ecological Knowledge (TEK) studies in the Lake Clark area (Morris 1986, Stickman et al. 2003) and during patrols of the Lake Clark shoreline by NPS staff. Sport fishing locations were identified in the Lake Clark drainage by LACL staff during radio telemetry surveys and during a 1999 creel survey of the Kijik River drainage. Subsistence and sportfish harvest data were summarized from the Alaska Department of Fish and Game (ADFG) management reports. #### RESULTS Spawning distribution Spawning locations were determined for 282 of 332 radio tagged sockeye salmon (Figure 4). Eighty five percent of tagged fish returned to spawning locations within the Lake Clark watershed and 15% returned to spawning locations
downstream of the tagging site (Table 1). Fish not tracked to spawning locations were either never located, lost after being tracked into Lake Clark, or lacked sufficient relocation data to determine a spawning location. On average, radio tagged fish tracked to spawning locations were relocated 12.7 times (range, 3 – 33) with over 3,500 relocations made during the two study years. Spawning activity Spawning was observed from late August until mid November with spawning activity ranging from several weeks at some locations (e.g. Sucker Bay Lake) to over two months at others (e.g. Kijik Lake). Peak spawning activity throughout the watershed generally occurred between 15 September and 15 October (Appendix 2). Fish spawned earliest in Sucker Bay Lake and latest in the turbid waters of Little Lake Clark and Tlikakila River. Spawning activity was generally earlier in warmer water habitats and later in cooler water. For example, peak spawning in Tazimina River (12.9° C) and Lake Clark outlet (11° C) was in August/early September, whereas spawning in the spring-fed Priest Rock Creek (4.5° C) was in mid October (Appendix 2, Table 2 and 3). Figure 4. Spawning locations of radio tagged sockeye salmon in the Lake Clark watershed, 2000 and 2001. The number of tagged fish per spawning location is indicated. Five spawning locations (labeled with a 0) were located by visual observation or seining. Shaded areas indicate glacially turbid waters (≥ 5 NTU) with limited visibility. Spawning activity in turbid locations in the Lake Clark watershed coincided with a dramatic decrease in suspended sediment concentrations and an increase in specific conductance. In the glacier-fed Tlikakila River, spawning began when temperatures cooled and the concentration of suspended sediments decreased from a high of 710 mg/L (125 NTU) in June to 71 mg/L (15 NTU) in September (Appendix 2; Brabets 2002). The concentration further declined to 9 mg/L in October when peak spawning ended. During this same time period, specific conductance was $40~\mu s/cm$, $32~\mu s/cm$, $55~\mu s/cm$, and $91~\mu s/cm$ indicating an increased contribution of groundwater inflow to the system (Appendix 3; Brabets 2002). Thirty two spawning areas were identified in the Lake Clark watershed (Figure 4, Appendix 2). Radio tagged salmon returned to 30 spawning locations including 27 locations in the Lake Clark watershed and three located downstream of the tagging site (Figure 4, Appendix 2). An additional five spawning locations were identified in the Lake Clark watershed by visual observation or seining (Figure 4, Appendix 2). Although 32 spawning locations were identified in the Lake Clark watershed, 70% of radio tagged fish returned to five spawning locations including the Tlikakila River (21%), the Kijik River drainage (20%), and beach spawning areas off the mouth of the Tanalian (14%), Kijik (8%), and Chokotonk Rivers (7%) (Figure 4, Appendix 2). Please see Young (2004) for more detailed results concerning migration patterns and spawning distribution of radio tagged fish. Seventy percent of radio tagged fish returned to beach spawning sites and 30% returned to tributary rivers in the Lake Clark watershed (Table 1). Of the beach spawners, 57% spawned in Lake Clark, 24% in Kijik Lake, 16% in Little Lake Clark, and 3% in Sucker Bay Lake. Seventy one percent (n = 51) of the tributary spawners spawned in the Tlikakila River. Table 1. Tagging and tracking summary for radio tagged adult sockeye salmon in Lake Clark watershed, 2000 and 2001. | | | | Numbe | er of salmon | | | |----------------------------|-----|-------|-------|--------------|-----|-------| | Category | 20 | 000 | 2 | 2001 | 7 | otal | | Tagged | 175 | | 157 | | 332 | | | Never located | 8 | (5%) | 0 | | 8 | (2%) | | Lost / no determination | 33 | (19%) | 9 | (6%) | 42 | (13%) | | Tracked to spawning area | 134 | (76%) | 148 | (94%) | 282 | (85%) | | Spawning Distribution | | | | | | | | Downstream spawning areas* | 35 | (26%) | 6 | (4%) | 41 | (15%) | | Lake Clark spawning areas | 99 | (74%) | 142 | (96%) | 241 | (85%) | | Beach spawning habitat | 71 | (72%) | 98 | (69%) | 169 | (70%) | | Tributary spawning habitat | 28 | (28%) | 44 | (31%) | 72 | (30%) | ^{*} Includes spawning areas at the outlet of Lake Clark, in Sixmile Lake, and in the Newhalen River (Figure 4). #### Characteristics of Spawning Habitat Beach spawning habitats were located in both glacially turbid (\geq 5 NTU) and clear (< 5 NTU) water and were typically next to inlet tributaries or springs (Table 2). The slope of beach spawning habitats ranged between 0.04 in Kijik Lake to 0.13 in Little Lake Clark. The spawning substrate at beach spawning habitats was predominately comprised of medium-sized gravel (\geq 4 mm, < 64 mm) except at Little Lake Clark where more than half of the substrate was large boulders (Table 2). incubation (intergravel - 11 Oct to 30 May) and spawning (surface), mean turbidity during spawning, mean water depth, mean channel width, and percent frequency of small (<4mm), medium (>4,<64mm), and large (<64mm) substrate by spawning habitat (K. Ramstad, Table 2. Characteristics of spawning habitat in Lake Clark and Tazimina River watersheds. Mean water temperature during University of Montana, unpublished data). | | | | Temperature (°C) | ture (°C) | | | | | Per | Percent substrate | rate | |-----------------------|-----------|----------------------|------------------|-----------|--------------------|-----------------------|-------------------------|-------|--------------|-------------------|-------| | Spawning location | Ecotype | Date | Incubation | Spawning | Turbidity
(NTU) | Water
depth
(m) | Channel
width
(m) | Slope | Small | Medium | Large | | Sucker Bay Lake | Beach | 9/15/2000 | 3.0 | 11.3 | 2.7 | 0.68 | | 0.07 | 1 | 41 | 49 | | Kijik Lake S. Beach | Beach | 10/5/2000 | , | 9.0 | 0.7 | 0.45 | | 0.04 | 16 | 80 | 4 | | Little Lake Clark | Beach | 10/8/2000 | 1 | 6.4 | 11.6 | 0.83 | | 0.13 | 7 | 32 | 99 | | Tazimina River | Tributary | 8/26/2001 | 1.3 | 12.9 | 9.0 | 09.0 | 47 | | _ | 75 | 14 | | Kijik River | Tributary | 9/20/2001 | 4.8 | 7.5 | 2.2 | 0.46 | 13 | | 17 | 20 | 13 | | Little Kijik River | Tributary | 9/19/2000 | 3.0 | 11.0 | 9.0 | 0.47 | 52 | | 10 | 87 | က | | Priest Rock Creek | Tributary | Tributary 10/11/2001 | 4.5 | 4.9 | 1.6 | 0.51 | 18 | | 99 | 32 | 2 | | Currant Creek | Tributary | 9/24/2001 | ı | 5.0 | 7.0 | 0.47 | 6 | | 24 | 52 | 24 | | Lower Tlikakila River | Tributary | 10/12/2000 | 1.5 | 3.1 | 6.2 | 0.36 | 19 | | 24 | 56 | 20 | | Upper Tlikakila River | Tributary | 9/26/2001 | 1 | 5.0 | 8.1 | 0.32 | 59 | | 73 | 56 | ~ | | | | | | | | | | | | | | Tributary spawning habitats were also located in both glacially turbid (\geq 5 NTU) and clear (< 5NTU) water and were generally shallow (< 0.7 m) channels with small to medium sized substrate (Table 2). The average channel width ranged from 9 m in Currant Creek to 52 m in Little Kijik River. The average water depth for all tributary habitats was 0.46 meters and the shallowest stream channels were located in the Tlikakila River. Spawning activity in the Tlikakila River was generally confined to side-channels off the main river. Spawning substrate in tributary habitats was mostly comprised of medium-sized gravel except in the upper Tlikakila River and Priest Rock Creek which were dominated by small (<4 mm) fines (Table 2). Water quality and discharge data collected by Brabets (2002) were relatively consistent among tributaries (Table 3, Appendix 3). Specific conductance ranged between 45 μ s/cm and 91 μ s/cm, pH ranged between 7.0 and 7.5, and dissolved oxygen ranged between 10.3 mg/L and 16.5 mg/L for all sites (Table 3) Suspended sediment concentrations were greatest in the glacier-fed Tlikakila River and Currant Creek. Stream discharge ranged between 7 m³/s and 87 m³/s except for at the outlet of Lake Clark which ranged between 246 m³/s and 433 m³/s (Table 3). Water temperatures ranged from a low of 0.0° C in Chokotonk and Tlikakila Rivers to a high of 13.0° C in the Tazimina River (Table 3). Table 3. Characteristics of tributary inputs to Lake Clark at time of spawning activity 1999 - 2001 (From Brabets 2002). | Tributary | Discharge
(m³/s) | Specific
conductance
(µs/cm) | рН | Water
temperature
(°C) | Dissolved
oxygen
(mg/L) | Suspended
sediments
(mg/L) | |-------------------|---------------------|------------------------------------|-----------|------------------------------|-------------------------------|----------------------------------| | Chokotonk River | 7 | 45 - 74 | 7.1 - 7.2 | 0.0 - 6.5 | 11.6 - 12.2 | 9 | | Currant Creek | 8 - 25 | 55 - 74 | 7.0 - 7.4 | 2.0 - 6.5 | 11.6 - 14.9 | 3 - 25 | | Kijik River | 12 - 22 | 85 - 88 | 7.0 - 7.3 | 3.5 - 8.5 | 11.2 - 13.5 | 2 - 6 | | Lake Clark Outlet | 246 - 433 | 57 - 62 | 7.0 - 7.3 | 8.5 - 11.0 | 10.8 - 12.4 | 1 - 5 | | Tanalian River | 13 - 18 | 44 - 52 | 7.0 - 7.2 | 5.5 - 10.5 | 10.3 - 12.0 | 1 - 3 | | Tlikakila River | 21 - 87 | 55 - 91 | 7.2 - 7.5 | 0.0 - 8.0 | 11 - 16.5 | 9 - 118 | ### Land ownership and development Seventy five percent of the spawning areas were adjacent to private or Native corporation lands (Figure 7; National Park Service 2001). Non-Federal lands in the Lake Clark watershed are comprised of Native corporation land, native allotments, subdivided corporation or allotments, and private parcels. Four Native corporations including Kijik Corporation, Tanalian Incorporated, Bristol Bay Native Corporation (BBNC), and Cook Inlet Region Incorporated (CIRI) own or have selected land adjacent to spawning areas in the Lake Clark watershed. Lands adjacent to spawning areas in the Kijik Lake drainage have been selected (pending conveyance) by CIRI. Kijik Corporation owns the surface property rights on land adjacent to spawning areas in the southwest region of the watershed while BBNC owns the subsurface property
rights. Tanalian Incorporated owns land adjacent to spawning areas near the community of Port Alsworth (population 103) on the south shore of Lake Clark. There are more than 100 individual parcels of land along the Lake Clark shoreline including native allotments, subdivisions (Keyes Point, Portage Creek, and Dice Bay), and land associated with the town of Port Alsworth. Figure 5. Spawning locations relative to land ownership within the Lake Clark watershed (National Park Service 2001). Seventy five percent of the spawning sites identified in the Lake Clark watershed were adjacent to private land, and most of this land (73%) remains undeveloped. More (61%) radio tagged fish returned to spawning areas adjacent to private land than federally protected land, and most (74%) returned to areas that are currently undeveloped. Current development is primarily limited to seasonal and year-round residences and fishing/hunting lodges. Access to these lands is provided by boat or aircraft. Several small roads connect parcels of land within Port Alsworth and Keyes Point. Small runways provide access to private parcels at Tommy Creek, Miller Creek, Kijik Outlet, Chulitna Bay, and Dice Bay and large runways (3000 - 4000 ft) provide access to the communities at Port Alsworth and Keyes Point (Figure 7). The greatest concentration of development adjacent to a spawning habitat is located on the southwest shore of Lake Clark in the community of Port Alsworth. Other areas of concentrated development adjacent to spawning areas include Keyes Point subdivision and Stinson Lake subdivision at Dice Bay. The Keyes Point subdivision is composed primarily of summer cabins and currently has small (2.5 acres) lots for sale at an affordable price (\$15,000). ### Subsistence and sport fishing use Subsistence fishing was documented throughout Lake Clark with most fishing occurring near permanent residences, seasonal fish camps, or spawning areas (Figure 5; Morris 1986, Stickman et al. 2003). Subsistence fishing occurs in July and August for migrating sockeye salmon and in September and October for redfish (spawning sockeye salmon). The harvest of salmon in July/August occurs along the shoreline of Lake Clark adjacent to permanent residences or seasonal fish camps whereas the harvest of redfish in September/October occurs at spawning sites. The primary redfish harvest location within Lake Clark is at the outlet of the Kijik River adjacent to historic Kijik Village. Sockeye salmon harvests by Port Alsworth subsistence permit holders from the period 2001 to 2003 averaged 1,510 fish, compared to a recent 10-year average (1991 to 2000) of 3,067 sockeye salmon (Table 4; ADFG 2004). Sport fishing for Lake Clark sockeye salmon is limited within the Lake Clark watershed and primarily occurs outside the park boundary at the outlet of Iliamna Lake (Kvichak River) and along the Newhalen River (Figure 1; Dunaway and Jaenicke 2000). During the period 1993 to 1997 the sport fish harvest for sockeye salmon in the Kvichak River and Newhalen River was 2,730 fish and 6,991 fish respectively (Table 5). In contrast, the harvest of sockeye salmon from Lake Clark during this same time period was 497 fish (Table 5; Dunaway and Sonnichsen 2000). During the period 2000 to 2003, the average sport fish harvest of sockeye salmon from Lake Clark was 242 fish (Walker et al. 2003, Jennings et al. 2004, ADFG^d, ADFG^f). Within the Lake Clark drainage, anglers fish for sockeye salmon from mid July to mid August at the outlet of Lake Clark, the mouth of the outlet tributary for Sucker Bay Lake, the mouth of the Tanalian River, the mouth of Kijik River, and within the Kijik Lake drainage (Figure 6). Within the Kijik system, anglers primarily fish large pools in the upper and lower sections of the Little Kijik River. In 1999, anglers harvested 57 sockeye salmon from the Kijik Lake drainage between 1 August and 16 August (unpublished data). Table 4. Subsistence harvest of sockeye salmon by community, in numbers of fish, Kvichak River drainage, Bristol Bay, 1983-03^{ab} (From ADFG 2004). | | | | Pedro | | Iliamna- | | Port | | | |--------------|----------|---------|--------|----------|----------|-----------|----------|--------------------|---------| | Year | Levelock | Igiugig | Bay | Kokhanok | Newhalen | Nondalton | Alsworth | Other ^e | Total | | 1983 | 4,800 | 3,300 | 10,400 | 20,100 | 23,800 | 29,400 | 4,700 | | 96,500 | | 1984 | 8,100 | 6,300 | 12,100 | 24,400 | 15,900 | 29,100 | 4,600 | | 100,500 | | 1985 | 6,600 | 3,400 | 12,900 | 21,900 | 22,300 | 14,900 | 4,500 | | 86,500 | | 1986 | 6,400 | 1,600 | 6,700 | 18,300 | 17,000 | 6,600 | 3,300 | | 59,900 | | 1987 | 5,700 | С | 7,300 | 16,500 | 27,500 | 11,800 | 3,200 | | 72,000 | | 1988 | 3,500 | С | 5,500 | 14,400 | 29,800 | 20,700 | 3,200 | d | 77,100 | | 1989 | 5,100 | 1,200 | 6,700 | 13,000 | 24,700 | 18,500 | 2,200 | d | 71,400 | | 1990 | 4,700 | 2,200 | 6,600 | 12,400 | 18,800 | 27,300 | 3,200 | 1,400 | 76,600 | | 1991 | 1,029 | 1,712 | 9,739 | 17,184 | 29,094 | 4,163 | 2,755 | 1,110 | 66,786 | | 1992 | 4,374 | 1,056 | 6,932 | 11,477 | 29,633 | 13,163 | 2,954 | 2,559 | 72,148 | | 1993 | 4,699 | 1,397 | 6,226 | 18,810 | 19,067 | 17,890 | 3,254 | 2,780 | 74,123 | | 1994 | 1,467 | 1,201 | 8,747 | 15,771 | 15,553 | 15,246 | 3,074 | 3,284 | 64,343 | | 1995 | 3,756 | 497 | 5,359 | 14,412 | 20,134 | 4,188 | 2,892 | 3,441 | 54,679 | | 1996 | 1,120 | 2,309 | 5,219 | 14,011 | 14,787 | 11,856 | 3,263 | 2,307 | 54,872 | | 1997 | 1,062 | 2,067 | 5,501 | 8,722 | 19,513 | 17,194 | 2,348 | 3,101 | 59,508 | | 1998 | 2,454 | 1,659 | 3,511 | 10,418 | 16,165 | 13,136 | 2,678 | 3,635 | 53,656 | | 1999 | 1,276 | 1,608 | 5,005 | 10,725 | 14,129 | 17,864 | 4,282 | 2,834 | 57,723 | | 2000 | 1,467 | 1,981 | 1,815 | 7,175 | 6,679 | 11,953 | 3,200 | 2,720 | 36,990 | | 2001 | 908 | 779 | 2,118 | 9,447 | 8,132 | 7,566 | 1,958 | 1,901 | 32,808 | | 2002 | 625 | 2,138 | 2,687 | 9,847 | 9,417 | 5,508 | 1,201 | 1,578 | 33,001 | | 2003 | 737 | 1,081 | 2,135 | 9,771 | 13,824 | 8,016 | 1,370 | 1,591 | 38,495 | | | | | | | | | | | | | 20 Year Avg. | 3,457 | 2,022 | 6,553 | 14,450 | 19,105 | 14,901 | 3,138 | 2,512 | 65,057 | | 1983-92 | 5,030 | 2,596 | 8,487 | 16,966 | 23,853 | 17,563 | 3,461 | 1,690 | 77,943 | | 1993-02 | 1,883 | 1,564 | 4,619 | 11,934 | 14,358 | 12,240 | 2,815 | 2,758 | 52,170 | ^a Harvests are extrapolated for all permits issued, based on those returned. Harvest estimates from 1991 are rounded to the nearest hundred fish. ^b Harvest estimates prior to 1990 are based on the community where the permit was issued; estimates from 1990 to the present are based on community of residence and include fish caught only in the Kvichak District. ^c No permits issued. ^d No permits issued. Only residents of the Naknek/Kvichak watershed could obtain subsistence permits. Subsistence harvests by non-Kvichak River watershed residents. Table 5. Sport fish harvest of sockeye salmon by location, in numbers of fish, Kvichak River drainage, Bristol Bay, 1977 -2003 (modified from ADFG management reports^{abcde}). | Year | Kvichak River | Newhalen River | Lake Clark | |---------|---------------|----------------|------------| | 1977 | 583 | 805 | 420 | | 1978 | 380 | 1,479 | 648 | | 1979 | 283 | 1,163 | 1,022 | | 1980 | 654 | 715 | 155 | | 1981 | 400 | 1,490 | 292 | | 1982 | 639 | 1,786 | 220 | | 1983 | 603 | 1,671 | 603 | | 1984 | 898 | 2,581 | 449 | | 1985 | 1,827 | 2,623 | 106 | | 1986 | 102 | 238 | 0 | | 1987 | 1,805 | 4,185 | 110 | | 1988 | 526 | 2,414 | 0 | | 1989 | 4,769 | 14,508 | 252 | | 1990 | 2,988 | 6,093 | 246 | | 1991 | 1,249 | 9,523 | 143 | | 1992 | 1,964 | 6,509 | 510 | | 1993 | 2,923 | 9,889 | 297 | | 1994 | 4,001 | 7,973 | 782 | | 1995 | 3,811 | 7,859 | 800 | | 1996 | 2,139 | 4,795 | 91 | | 1997 | 778 | 4,440 | 515 | | 1998 | 2,910 | 6,830 | 159 | | 1999 | 3,516 | 6,356 | 161 | | 2000 | 3,554 | 3,414 | 148 | | 2001 | 4,017 | | 473 | | 2002 | 2,147 | | 34 | | 2003 | 2,754 | | 314 | | Average | 1,934 | 4,556 | 331 | ^a 1977 - 1998 data summarized in Dunaway and Sonnichsen (2001) ^b 1999 data from Howe et al. (2001) ^c 2000 data from Walker et al. (2003) ^d 2001 data from Jennings et al. (2004) ^e 2002 – 2003 data from ADFG website (ADFG^d ADFG^f) Figure 6. Subsistence fishing use within the Lake Clark watershed. Harvests of sockeye salmon occur both in July when salmon enter the system (sockeye salmon harvest) and in September/October when salmon are at spawning locations (redfish harvest). #### DISCUSSION Spawning locations for sockeye salmon have been underestimated in the Lake Clark watershed. Compared to previous scientific research (Demory et al. 1964, Smith 1964, Anderson 1968, Russell 1980, Jensen and Mathisen 1987, Parker and Blair 1987, Regnart 1998), this study documented 18 new spawning locations. Compared to traditional ecological knowledge, 10 new spawning locations were identified (Morris 1986, Stickman et al. 2003). Most of the newly identified spawning locations were in turbid areas of the watershed. Historic aerial surveys that relied on visual observation suggested that 50 – 90% of Lake Clark sockeye salmon spawned in clear water tributaries (Parker and Blair 1987, Regnart 1998). In contrast, this study indicates that 65% of Lake Clark sockeye salmon spawn in glacially turbid locations (Figure 4). Glacially turbid waters have obviously limited the accurate assessment of sockeye salmon spawning locations and distribution in the Lake Clark watershed. Figure 7. Sport fishing use for sockeye salmon within the Lake Clark watershed. Radio telemetry was an effective tool to identify sockeye salmon spawning habitat within the Lake Clark watershed. Seventy-six percent of tagged fish were tracked to spawning areas in 2000 and 94% in 2001. During both years of the study, most tagged fish were tracked to spawning areas within the Lake Clark drainage. In 2000, however, 26% of tagged fish migrated to a spawning area just downstream of the
tagging site. While some of these fish may have been affected by the clove oil anesthetic or died after tagging, it is more likely these fish were captured while milling in close proximity to their spawning location. Of the fish tracked downstream, most were captured after August 9, 2000 and displayed phenotypic characteristics of spawning sockeye salmon. In 2001, the tagging period was shortened and less than 5% of tagged fish were tracked to downstream spawning areas. Similar to observations in other glacial systems, most spawning locations in the Lake Clark watershed were associated with a clear water source, such as an inlet tributary. Lorenz and Eiler (1989) suggested that upwelling groundwater and springs are sufficient to remove fine sediments from the spawning substrates in turbid rivers. Sockeye salmon that spawned in turbid waters along the shoreline of Tustumena Lake preferred locations adjacent to inlet tributaries or springs (Burger et al. 1995). Hyporheic flow in these areas may similarly remove sediments from the spawning substrate. Water quality data collected from spawning habitats and tributaries of Lake Clark (Brabets 2002) were within acceptable levels for sockeye salmon spawning and survival. All pH observations were near neutral and within the EPA's criteria (pH range of 6.5 – 9.0) for freshwater aquatic life (USEPA 1987). Dissolved oxygen ranged between 9.4 mg/L and 14.9 mg/L, which were within the acceptable range for spawning sockeye salmon (Bjornn and Reiser 1991). Turbidity values and suspended sediment concentrations were highest in the glacial rivers and Little Lake Clark but still within state standards for streams and lakes (Lloyd 1987). Spawning activity by sockeye salmon in glacially turbid tributaries coincided with cooling temperatures, lower water levels, and a dramatic decrease in the concentration of suspended sediment in the water. The similar timing of spawning activity among glacier fed rivers in the watershed suggests an adaptive response to seasonal turbidity cycles. Jensen and Mathisen (1987) observed sockeye salmon generally migrate into glacial systems later than into clear systems. Such a behavioral adaptation would result in deposition of eggs on a decreasing turbidity cycle, thereby reducing adverse effects of fine sediments on embryo survival (Chapman 1988). Surface water temperatures measured at spawning sites (Table 2) and tributaries (Table 3) were mostly within acceptable levels for sockeye salmon (Reiser and Bjornn 1991). Surface water and incubation temperatures measured at spawning habitats were sufficient for sockeye salmon spawning activity and incubation. Surface water temperatures measured at the outlet of the Tlikakila and Chokotonk Rivers (Table 3; Brabets 2002), however, were not sufficient for salmon survival and not surprisingly, no spawning activity was documented in these areas. Spawning substrate was variable among Lake Clark sites yet within acceptable ranges for sockeye salmon spawning habitat. Generally, sockeye salmon prefer spawning habitat with small to medium sized gravel (Burgner 1991) such as was found in Tazimina River and the Kijik Lake drainage (Table 2). The large concentration of small substrate observed in the headwaters of the Tlikakila River was similar to what has been documented in sockeye salmon redds in the glacier-fed Taku River in southeast Alaska (Lorenz and Eiler 1991). The large percentage of larger substrate in Little Lake Clark was similar to spawning habitats in other sockeye systems (see reviews by Foerster 1968, Burgner 1991). Spawning substrate samples in Priest Rock Creek may be biased toward small fines because there were fewer than one hundred fish to remove fine sediment from the spawning gravels, and beaver activity in the area has increased sedimentation of the spawning habitat. Turbid water and poor visibility limited the assessment of beach spawning habitats in Lake Clark and Little Lake Clark. While spawning activity was confirmed in these areas, habitat assessment was limited. In Little Lake Clark, substrate samples were collected in shallow, turbid water and may not represent habitat used by spawning salmon. Further work is needed to more precisely define beach spawning habitats in turbid habitats. Hydroacoustics could be used to delineate critical spawning habitat and focus future habitat studies. Subsistence and sport harvests of sockeye salmon within the Lake Clark watershed are currently at low levels and represent less than one percent of the annual escapement of sockeye salmon to Lake Clark (Poe and Rogers 1984, Woody 2004). In contrast, commercial fisheries in Bristol Bay harvest, on average, 53% of the annual sockeye salmon return to the Kvichak, Alagnak, and Naknek Rivers (Appendix 4). Recent declines in the subsistence and sport harvests of sockeye salmon in the Kvichak River drainage are likely the result of decreased salmon escapement to the system (Table 4, Table 5, Appendix 4). The Kvichak River system has failed to reach its minimum escapement goal in seven of the last nine years (ADFG 2004). An especially low return of sockeye salmon in 2000 caused the ADFG to close the sport fishery (ADFG^a). In 2001, 2002, and 2003 limits on the sport fishing harvest were similarly enacted due to poor returns (ADFG^b ADFG^c, ADFG^c). Decreased subsistence harvest of sockeye salmon in the Lake Clark watershed may also be the result of recent NPS restrictions on subsistence fisheries. On May 21, 2001, subsistence fishing with nets in LACL, including all of Lake Clark, was restricted to federally qualified local rural residents. This restriction applies to anyone who is not a permanent resident of Iliamna, Lime Village, Newhalen, Nondalton, Pedro Bay, or Port Alsworth, or who does not have a Section 13.44 subsistence use permit issued by the park superintendent. Prior to this restriction, any Alaskan resident was eligible to harvest subsistence fish from Lake Clark. Since the restriction was established, fewer permits have been issued and the subsistence harvest for sockeye salmon has decreased (ADFG 2003). Development on private lands could harm important salmon spawning habitat in the Lake Clark watershed. Spawning areas most susceptible to future development on privately owned land include Kijik Lake and associated drainages, Tanalian Point/Port Alsworth, Dice Bay, and Keyes Point. As the number of permanent and seasonal residents increase in the Lake Clark area, more private land will be subdivided, sold, and developed. For example, subdivisions have recently been created in the Dice Bay and Keyes Point areas. Construction and land clearing at these sites could harm spawning habitats. Similarly, development in the Kijik River drainage and in Port Alsworth has the potential to impact a large proportion of Lake Clark spawning sockeye salmon. Further, proposed bridges across the Tanalian River and Newhalen River, as well as proposed mining activity in the headwaters of the Chulitna River, could adversely affect water quality and habitat critical for Lake Clark sockeye salmon spawning and rearing. #### LITERATURE CITED - ADFG^a. 2000 Southcentral Region 2 Sport Fishing Emergency Order No.: 2-RS-5-13-00. Alaska Department of Fish and Game, Division of Sport Fish. http://www.sf.adfg.state.ak.us/statewide/eonr/index.cfm - ADFG^b. 2001 Southcentral Region 2 Sport Fishing Emergency Order No.: 2-RS-5-12-01. Alaska Department of Fish and Game, Division of Sport Fish. http://www.sf.adfg.state.ak.us/statewide/eonr/index.cfm - ADFG^c. 2002 Southcentral Region 2 Sport Fishing Emergency Order No.: 2-RS-5-09-02. Alaska Department of Fish and Game, Division of Sport Fish. http://www.sf.adfg.state.ak.us/statewide/eonr/index.cfm - ADFG^d. Kvichak River drainage area sport fish harvest and effort by fisheries and species, 2002, Alaska Department of Fish and Game, Division of Sport Fish. http://www.sf.adfg.state.ak.us/Statewide/ParticipationAndHarvest/main.cfm - ADFG^e. Southcentral Region 2 Sport Fishing Emergency Order No.: 2-RS-5-11-03; Alaska Department of Fish and Game, Division of Sport Fish. http://www.sf.adfg.state.ak.us/statewide/eonr/index.cfm - ADFG^f. Kvichak River drainage area sport fish harvest and effort by fisheries and species, 2003; Alaska Department of Fish and Game, Division of Sport Fish. http://www.sf.adfg.state.ak.us/Statewide/ParticipationAndHarvest/main.cfm - ADFG^g. 2004 Bristol Bay salmon fishery season summary. Alaska Department of Fish and Game, Division of Commercial Fisheries. http://www.cf.adfg.state.ak.us/region2/finfish/salmon/bbayhome.php - ADFG. 2001. Alaska Department of Fish and Game Division of Commercial Fisheries annual management report, 2000, Bristol Bay Area. Anchorage, Alaska. - ADFG. 2003. Alaska Subsistence Fisheries 2002 Annual Report. Alaska Department of Fish and Game, Division of Subsistence. Juneau, Alaska. - ADFG. 2004. Alaska Department of Fish and Game Division of Commercial Fisheries Annual Management Report, 2003, Bristol Bay Area. Anchorage, Alaska. - Anderson, J.W. 1968. Addendum to spawning ground catalog of the Kvichak River system, Bristol Bay, Alaska. University of Washington, Fisheries Research Institute Circular No. 68-2. - Anderson, J.W. 1969. Bathymetric measurements of Iliamna Lake and Lake Clark, Alaska. University of Washington, Fisheries Research Institute Circular No. 69-17. - ANILCA. 1980. Alaska National Interest Lands Conservation Act. 16 U.s.C. 3101 et seq. (1988), Dec 2 1980, Stat.
2371, Pub. L. pages 96-487. - Bennett, A.J. 1995. Bald eagle productivity in Lake Clark National Park and Preserve. Unpublished Progress Report. National Park Service-LACL, Port Alsworth, Alaska. - Brabets, T.P. 2002. Water Quality of the Tlikakila River and five major tributaries to Lake Clark, Lake Clark National Park and Preserve, Alaska, 1999-2001. U.S. Geological Survey Water Resources Investigations Report 02-4127. - Burger, C.V., J.E. Finn, and L. Holland-Bartels. 1995. Pattern of shoreline spawning by of the sockeye salmon in a glacially turbid lake: evidence for population differentiation. Transactions American Fisheries Society 124: 1-15. - Burgner, R.L. 1991. Life history of sockeye salmon (*Oncorhynchus nerka*). Pages 1-117 *in Groot*, C., and L. Margolis, editors. Pacific Salmon Life Histories, University of British Columbia Press, Vancouver, British Columbia, Canada. - Bjornn, T.C., and D.W. Reiser. 1991. Habitat requirements of salmonids in streams. American Fisheries Society Special Publication 19: 83-138. - Chapman, D.W. 1988. Critical review of variables used to define effects of fines in redds of large salmonids. Transactions of the American Fisheries Society. 117:1-21. - Demory, R.L., R.F. Orrell, and D.R. Heinle. 1964. Spawning ground catalog of the Kvichak River system, Bristol Bay, Alaska. U.S. Fish and Wildlife Service Special Scientific Report No. 488. - Dunaway, D.O., and M.J. Jaenicke. 2000. Area management report for the recreational fisheries of the Southwest Alaska Sport Fish Management Area, 1998. Alaska Department of Fish and Game, Fishery Management Report No. 00-3, Anchorage. - Dunaway, D.O., and S. Sonnichsen. 2001. Area management report for the recreational fisheries of the Southwest Alaska Sport Fish Management Area, 1999. Alaska Department of Fish and Game, Fishery Management Report No. 01-6, Anchorage. - Foerster, R.E. 1968. The sockeye salmon, *Oncorhynchus nerka*. Fisheries Research Board of Canada Bulletin 162. - Howe, A.L., R.J. Walker, C. Olnes, K. Sundet, and A.E. Bingham. 2001. Participation, catch, and harvest in Alaska sport fisheries during 1999. Alaska Department of Fish and Game, Fishery Data Series No. 01-8, Anchorage. - Jennings, G.B., K. Sundet, A.E. Bingham, and D. Sigurdsson. 2004. Participation, catch, and harvest in Alaska sport fisheries during 2001. Alaska Department of Fish and Game, Fishery Data Series No. 04-11, Anchorage. - Jensen, K.A., and O.A. Mathisen. 1987. Migratory structure of the Kvichak River sockeye salmon (*Oncorhynchus nerka*) escapement, 1983. Pages 101-109 in H.D. Smith, L. Margolis, and C.C. Wood [ed.]. Sockeye salmon (*Onchorhyncus nerka*) population biology and future management. Government of Canada, Department. of Fisheries and Oceans, Ottawa, Ontario - Jones, S.H., and C.B. Fahl. 1994. Magnitude and frequency of floods in Alaska and conterminuous basins of Canada: U.S. Geological Survey Water-Resources Investigations Report 93-4179. - Kline, T.C. Jr., J.J. Goering, O.A. Mathisen, P.H. Poe, P.L. Parker and R.S. Scalan. 1993. Recycling of elements transported upstream by runs of Pacific salmon: II. δ N and δ C - evidence of the Kvichak River watershed, Bristol Bay, southwestern Alaska. Canadian Journal of Fisheries and Aquatic Sciences 50: 2350-2365. - Kondolf, G.M. 1992. The Pebble Count Technique for Quantifying Surface Bed Material Size in Instream Flow Studies. Rivers 3: 80-87. - Lloyd, D.S. 1987. Turbidity as a water quality standard for salmonid habitats in Alaska. North American Journal of Fisheries Management 7: 34-45. - Lorenz, J.M., and J.H. Eiler. 1989. Spawning habitat and redd characteristics of sockeye salmon in the glacial Taku River, British Columbia and Alaska. Transactions of the American Fisheries Society 118: 495-502. - Morris, J.M. 1986. Subsistence production and exchange in the Iliamna Lake region, southwest, Alaska. Technical Paper Number 136. Alaska Department of Fish and Game, Juneau, Alaska. - National Park Service, Alaska Support Office, Land Resources Program Center. 2001. National Park Service land status federal, state, native, and private. Anchorage, Alaska. - Parker, S.S., and G.R. Blair. 1987. Aerial surveys of sockeye salmon abundance on spawning ground in the Lake Clark-Tazimina River watershed. University of Washington, Fisheries Research Institute FRI-UW-8703. - Poe, P.H., and D.E. Rogers. 1984. 1984 Newhalen River adult salmon enumeration program. University of Washington, Fisheries Research Institute Final Report Contract 14007-00011. Stone and Webster Engineering Corporation. FRI-UW-8415. - Ramstad, K.M. 2002. Historical sockeye salmon data of Lake Clark, Alaska. Unpublished report, Lake Clark National Park and Preserve, Port Alsworth, Alaska. - Ramstad, K.M., C.A. Woody, G.K. Sage, and F.W. Allendorf. 2004. Founding events influence genetic population structure of sockeye salmon (Oncorhynchus nerka) in Lake Clark, Alaska. Molecular Ecology 13: 277-290. - Reiser, D.W. and Bjornn, T.C. 1979. Habitat requirements of anadromous salmonids. General Technical Report PNW-96. U.S. Department of Agriculture, Portland, Oregon. - Regnart, J.R. 1998. Kvichak River sockeye salmon spawning ground surveys, 1955-1998. Alaska Department of Fish and Game, Regional Information Report 2A98-38. - Russell, R. 1980. A fisheries inventory of waters in the Lake Clark National Monument area. Alaska Department Fish Game. - Smith, H.D. 1964. The segregation of red salmon in the escapements to the Kvichak River system, Alaska. U.S. Fish and Wildlife Service Special Scientific Report Fisheries 470. - Stickman, K., A. Baluta, M. McBurney, and D. Young. 2003. K'ezghlegh Nondalton traditional ecological knowledge of freshwater fish. USFWS Office of Subsistence Management, Fisheries Resource Monitoring Program, Final Report No. FIS 01-075, Anchorage, Alaska. - Unrau, H.D. 1992. Lake Clark National Park and Preserve historic resource study. U. S. Department of Interior. National Park Service. Anchorage, Alaska. - USEPA. U.S. Environmental Protection Agency. 1987. Quality Criteria for Water. EPA Publication 440/5-86-001. United States Government Printing Office, Washington D.C. - Walker R.J., C. Olnes, K. Sundet, A.L. Howe, and A.E. Bingham. 2003. Participation, catch, and harvest in Alaska sport fisheries during 2000. Alaska Department of Fish and Game, Fishery Data Series No. 03-05, Anchorage. - Wilkens, A.X. 2002. The limnology of Lake Clark, Alaska. Masters thesis. University of Alaska Fairbanks. - Willson, M.F. 1995. Biodiversity and ecological processes. *in* R. Szaro, editor, Biodiversity in managed landscapes. Oxford University Press, New York. - Willson, M. and K. Halupka. 1995. Anadromous fish as keystone species in vertebrate communities. Conservation Biology 9: 489-497. - Wolman, M.G. 1954. A method of sampling coarse river-bed material. Transactions of the American Geophysical Union 35: 951-956. - Woody, C.A., K.M. Ramstad, D.B. Young, G.K. Sage and F.W. Allendorf. 2003. Lake Clark sockeye salmon population assessment. Final report for study 00-042 U. S. Fish and Wildlife Service, Office of Subsistence Management. - Woody, C.A. 2004. Population monitoring of sockeye salmon from Lake Clark and the Tazimina River, Kvichak River watershed, Bristol Bay, Alaska, 2000-2003. Final Report 01-095. U.S. Fish and Wildlife Service Office of Subsistence Management. Anchorage, Alaska. - Young, D.B. 2004. The migration and spawning distribution of sockeye salmon within Lake Clark, Alaska. Masters thesis. University of Alaska Fairbanks. ### APPENDIX Appendix 1. Lake Clark and Kvichak River sockeye salmon escapement, in numbers of fish, from 1980 – 1984 and 2000 – 2004 (modified from ADFG 2004 and Woody 2004). | Year | Lake Clark
escapement ^{abc} | % of
Kvichak | Kvichak River
escapement ^d | |---------------------|---|-----------------|--| | 1980 | 1,502,898 | 7 | 22,505,268 | | 1981 | 231,714 | 13 | 1,754,358 | | 1982 | 147,294 | 13 | 1,134,840 | | 1983 | 702,792 | 20 | 3,569,982 | | 1984 | 3,091,620 | 29 | 10,490,670 | | 2000 | 172,902 | 10 | 1,827,780 | | 2001 | 222,414 | 20 | 1,095,348 | | 2002 | 203,670 | 29 | 703,884 | | 2003 | 264,690 | 16 | 1,686,804 | | 2004 | 554,520 | 10 | 5,463,942 | | 1980 - 1984 Average | 1,135,264 | 16 | 7,891,024 | | 2000 - 2004 Average | 283,639 | 17 | 2,155,552 | ^a 1980 - 1984 data from Poe and Rogers (1984) ^d ADFG (2004) ^b 2000 - 2003 data from Woody (2004) ^c 2004 data unpublished, National Park Service, Port Alsworth, Alaska calculated from the tagging site at the outlet of Lake Clark. Private land and Development adjacent to spawning areas were recorded Appendix 2. Spawning locations identified by radio telemetry and visual observation in Lake Clark, 2000 and 2001. Distance was as present (Yes = Y) or not present (No = N). | | | | | 2% | 1% | 2% | 0.4% | 1% | 0.4% | 4% | 0.4% | 3% | 14% | %0 | 0.4% | 1% | %8 | 1% | 2% | %0 | 0.4% | %0 | 17% | %0 | %0 | 2% | 2% | 1% | |-------------------|-----------------------------|---------------------------|--------------------------------|--------------|--------------|-----------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|-------------------------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------------|--------------|--------------|---------------------------|--------------|--------------|-----------------|----------------| | Total | _ | _ | 39 | 4 | 7 | Ŋ | ←
.0 | ო | 1.0 | 10 | 1.0 | 7 | 34 1 | 0 | 1.0 | 7 | 9 | 2 | 9 | 0 | 1 0. | 0 | 40 1 | 0 | 0 | 9 | 2 | C. | | | | | | 5% | 1% | 1% | 1% | 1% | 1% | 2% | %0 | 4% | 12% | %0 | 1% | %0 | . %5 | %0 | 1% | %0 | 1% | %0 | 3% | %0 | %0 | 2% | 2% | %6 | | 2001 | <u>-</u> - | | 4 | ო | · · | | ·
- | | ·
- | 7 | 0 | 5 | 7 12 | 0 | ,
_ | 0 | <u>/</u> | 0 | ,
 0 | ·
- | 0 | 19 13 | 0 | 0 | 8 | 8 | cr. | | | | | | 1% | 1% | 3% | %0 | 2% | %0 | 3% | 1% | 2% | 17% 1 | %0 | %0 | 2% | 12% | 2% | 2% | %0 | %0 | %0 | 21% 1 | %0 | %0 | 3% | 2% | %0 | | 2000 | 0 | 0 | 35 | _ | _ | ო | 0 | α | 0 | ო | _ | 7 | 17 1 | 0 | 0 | 0 | 12 1 | 2 | 7. | 0 | 0 | 0 | 21 2 | 0 | 0 | რ | 2 | | | evelop-
ment | | | z | z | z | z | z | > | > | z | > | z | ≻ | z | z | > | ≻ | z | z | > | z | z | z | z | > | z | z | > | | Private Develop | , | ı | z | > | > | > | > | > | > | > | > | > | > | > | >- | > | > | > | > | > | > | > | > | > | > | > | z | > | | Distance
(km) | 19 | 8 | _ | 4 | 80 | 6 | 7 | 12 | 15 | 16 | 22 | 30 | 31 | 31 | 33 | 38 | 4 | 45 | 49 | 49 | 52 | 52 | 52 | 53 | 53 | 54 | 22 | C | | Spawning activity | | | 8/25-9/15 | 9/1-9/30 | 9/1-9/30 | 8/25-9/15 | 9/1-9/30 | 9/1-9/30 | 9/1-9/30 | 9/1-10/15 | 9/15-9/30 | 9/15-10/15 | 9/15-10/15 | 9/15-9/30 | 9/1-9/30 | 9/15-10/15 | 9/15-10/15 | 9/15-10/15 | 9/15-10/15 | 9/15-10/15 | 9/25-10/15 | 9/15-10/15 | 9/15-10/31 | 9/25-10/15 | 9/15 - 10/15 | 9/15-10/15 | 9/15-9/30 | D 10 14 II | | Habitat
type | Tributary | Beach | Tributary | Beach Tributary | Beach | Beach | Beach | Tributary | Tributary | Beach | Tributary | Beach | Beach | Tributary | Beach (| Beach | Tributary | dood | | Longitude | -154.8709529 | -154.8532472 | -154.7575543 | -154.7133590 | -154,6573315 | -154.6636382 | -154.6851025 | -154.6042180 | -154.6036866 | -154.5407755 | -154.4593394 | -154.4763469 | -154.3508224 | -154.2740385 | -154.3872065 | -154.2337341 | -154.2648977 | -154.2432988 | -154.2932831 | -154.13223 | -154.2287282 | -154.01009 | -154.3447792 | -154.34395 | -154.06406 | -154.0298919 | -153.8007299 | 150 0141006 | | Latitude | 59.8824614 | 59.9548997 | 60.0196571 | 60.0268979 | 60.0357855 | 60.0215469 | 60.1067853 | 60.0755617 | 60.1147003 | 60.0981051 | 60.1413319 | 60.2049753 | 60.1939450 | 60.1858212 | 60.2348902 | 60.2285721 | 60.2807490 | 60.2978737 | 60.3078998 | 60.33869 | 60.3084707 | 60.23969 | 60.2870340 | 60.28577 | 60.35162 | 60.3458561 | 60.2292195 | SO 27 / EE / E | | Specific location | Horseshoe Bend ^a | Simile lake ^a | Lake Clark outlet ^a | Outlet South | Sucker Bay | Sucker Bay Lake | Snowshoe Bay | Chi Point | Keyes Point | Flat Island | 22 Creek | Chulitna Bay | Tanalian Point | Tanalian Ríver ^b | | | | | | | | | Kijik Lake | | _ | | Currant Creek | Hatchet Doint | | Drainage | Newhalen River ^a | Sixmile Lake ^a | Sixmile Lake ^a | Lake Clark | 5 Lake Clark | Sucker Bay Lake | 7 Lake Clark | 8 Lake Clark | 9 Lake Clark | 0 Lake Clark | 1 Lake Clark | 2 Lake Clark | 3 Lake Clark | 4 Tanalian River ^b | 5 Lake Clark | 6 Lake Clark | 7 Lake Clark | 8 Kijik Lake | 9 Kijik Lake | 20 Lake Clark | 1 Priest Rock Creek | 2 Lake Clark | 3 Kijik Lake | 4 Kijik Lake ^b | 5 Lake Clark | 6 Lake Clark | 7 Currant Creek | 28 Lake Clark | -Continued- Appendix 2. (page 2 of 2). | | | | | | | | | • | | Number of tagged fish | of te | gged f | ish | | |----------------------|---------------------|-------------|------------------------|-----------|------------|----|---------------------------|----------|------|-----------------------|--------|--------|-------|-----| | | | | | Habitat | Spawning | | Distance Private Develop- | Develop- | | | | | | | | ID Drainage | Specific location | Latitude | atitude Longitude | type | activity | | land | ment | 2000 | | 2001 | | Total | _ | | 29 Lake Clark | Middle Ridge | 60.3607695- | 0.3607695-153.8619178 | Beach | 9/15-10/15 | 64 | z | z | - | 1% | 2 | 1% | 8 | 1% | | 30 Little Lake Clark | Cave Falls | 60.3856850 | 3.3856850 -153.7529883 | Beach | 9/15-10/15 | 71 | z | z | 0 | %0 | 7 | 1% | 7 | 1% | | 31 Little Lake Clark | Little Lake Clark N | 60.4183515 | 0.4183515 -153.6965771 | Beach | 9/15-10/15 | 92 | z | z | 0 | %0 | rS. | 4% | ιΩ | 2% | | 32 Little Lake Clark | Little Lake Clark S | 60.4175140 | 0.4175140 -153.6557679 | Beach | 9/15-10/15 | 77 | z | z | 0 | %0 | 7 | 1% | 2 | 1% | | 33 Little Lake Clark | Chokotonk Outlet | 60.4437421 | 0.4437421 -153.6218053 | Beach | 9/15-10/31 | 80 | z | z | 7 | 2% | 1 | . %11 | 18 | %/ | | 34 Little Lake Clark | Chokotonk River | 60.4669812 | -153.5423128 | Tributary | 9/15-10/15 | 98 | z | z | _ | 1% | 9 | 1% | 7 | 3% | | 35 Tlikakila River | Tlikakila River | 60.5537441 | -153.5067036 | Tributary | 9/15-10/15 | 86 | z | z | 18 1 | 18 18% 3 | 33 23% | 3% | 77 | 21% | | | | | | | | | | | | | | | | | ^a Identified by radio telemetry, but not included in estimates of spawning distribution. ^b Identified by visual observation or seining – no radio tags were tracked to this location. Appendix 3. Physical properties and water-quality characteristics of streamflow samples collected from the tributaries of Lake Clark, 1999 through 2001 (modified from Brabets 2002) | Tributary | Date | Discharge
(m³/s) | Specific
conductance
(µs/cm) | рН | Water
temperature
(°C) | Dissolved
oxygen
(mg/L) | Suspended sediments (mg/L) | |-------------------|------------|---------------------|------------------------------------|-----|------------------------------|-------------------------------|----------------------------| | Chokotonk River | 10/14/1999 | 7 | 74 | 7.1 | 0.0 | 11.6 | 9 | | Chokotonk River | 9/17/2001 | | 45 | 7.2 | 6.5 | 12.2 | | | Currant Creek | 9/15/1999 | 25 | 51 | 7.0 | 6.0 | 12.6 | 25 | | Currant Creek | 10/17/1999 | 8 | 74 | 7.3 | 2.0 | 11.6 | 7 | | Currant Creek | 9/19/2000 | 8 | 71 | 7.4 | 6.5 | 14.9 | 3 | | Currant Creek | 9/25/2001 | 19 | 55 | 7.0 | 5.5 | 13.7 | | | Kijik River | 9/14/1999 | 22 | 88 | 7.1 | 7.5 | 12.3 | 2 | | Kijik River | 10/13/1999 | 12 | 88 | 7.3 | 3.5 | 11.2 | 6 | | Kijik River | 9/19/2000 | 17 | 85 | 7.6 | 7.5 | 13.5 | 3 | | Kijik River | 9/25/2001 | 13 | 86 | 7.0 | 8.5 | 11.7 | | | Lake Clark Outlet | 9/13/1999 | 433 | 58 | 7.3 | 11.0 | 11.8 | 1 | | Lake Clark Outlet | 10/12/1999 | 306 | 62 | 7.3 | 11.0 | 11.8 | 1 | | Lake Clark Outlet | 9/22/2000 | 246 | 58 | 7.0 | 8.5 | 12.4 | 5 | | Lake Clark Outlet | 9/25/2001 | 300 | 57 | 7.2 | 10.0 | 10.8 | | | Tanalian River | 10/14/1999 | 15 | 52 | 7.0 | 5.5 | 10.3 | 3 | | Tanalian River | 9/20/2000 | 14 | 50 | 7.2 | 8.5 | 12.0 | 1 | | Tanalian River | 9/13/2001 | 18 | 50 | 7.1 | 10.5 | 10.4 | 1 | | Tanalian River | 9/24/2001 | 13 | 44 | 7.0 | 10.0 | 11.4 | | | Tlikakila River | 9/16/1999 | 86 | 55 | 7.2 | 6.0 | 13.3 | 71 | | Tlikakila River | 10/14/1999 | 25 | 91 | 7.3 | 0.0 | 11.6 | 9 | | Tlikakila River | 9/21/2000 | 21 | 71 | 7.5 | 8.0 | 11.0 | 118 | | | | | | | | | | | | Minimum | 13 | 44 | 7.0 | 0.0 | 10.3 | 2 | | | Maximum | 433 | 91 | 7.6 | 11.0 | 14.9 | 118 | | | Average | 168 | 65 | 7.2 | 6.8 | 12.0 | 25 | Appendix 4. Inshore commercial catch and escapement of sockeye salmon in the Naknek-Kvichak District by river system, in numbers of fish, Bristol Bay, 1983-2004 (modified from ADFG 2001, ADFG 2004) | • | | % of | | | | | | |-----------------|------------|--------------|----------------------|-----------------------|------------------------------|------------|------------| | Year | Catch | Total
Run | Kvichak ^a | Alagnak ^{bc} | ement
Naknek ^a | Total | Total Run | | 1980 | 15,120,457 | 37 | 22,505,268 | 297,900 | 2,644,698 | 25,447,866 | 40,568,323 | | 1981 | 10,992,809 | 75 | 1,754,358 | 82,210 | 1,796,220 | 3,632,788 | 14,625,597 | | 1982 | 5,005,802 | 66 | 1,134,840 | 239,300 | 1,155,552 | 2,529,692 | 7,535,494 | | 1983 | 21,559,372 | 83 | 3,569,982 | 96,220 | 888,294 | 4,554,496 | 26,113,868 | | 1984 | 14,546,710 | 55 | 10,490,670 | 215,370 | 1,242,474 | 11,948,514 | 26,495,224 | | 1985 | 8,179,093 | 47 | 7,211,046 | 118,030 | 1,849,938 | 9,179,014 | 17,358,107 | | 1986 | 2,892,171 | 46 | 1,179,322 | 230,180 | 1,977,645 | 3,387,147 | 6,279,318 | | 1987 | 4,986,002 | 41 | 6,065,880 | 154,210 | 1,061,806 | 7,281,896 | 12,267,898 | | 1988 | 3,480,836 | 40 | 4,065,216 | 194,630 | 1,037,862 | 5,297,708 | 8,778,544 | | 1989 | 13,809,956 | 59 | 8,317,500 | 196,760 | 1,161,984 | 9,676,244 | 23,486,200 | | 1990 | 17,272,224 | 65 | 6,970,020 | 168,760 | 2,092,578 | 9,231,358 | 26,503,582 | | 1991 | 10,475,206 | 56 | 4,222,788 | 277,589 | 3,578,508 | 8,078,885 | 18,554,091 | | 1992 | 9,395,948 | 59 | 4,725,864 | 224,643 | 1,606,650 | 6,557,157 | 15,953,105 | | 1993 | 8,907,876 | 60 | 4,025,166 | 347,975 | 1,535,658 | 5,908,799 | 14,816,675 | | 1994 | 16,327,858 | 63 | 8,337,840 | 242,595 | 990,810 | 9,571,245 | 25,899,103 | | 1995 | 20,279,581 | 64 | 10,038,720 | 215,713 | 1,111,140 | 11,365,573 | 31,645,154 | | 1996 | 8,211,983 | 74 | 1,450,578 | 306,750 | 1,078,098 | 2,835,426 | 11,047,409 | | 1997 | 589,311 | 18 | 1,503,732 | 218,115 | 1,025,664 | 2,747,511 | 3,336,822 | | 1998 | 2,595,439 | 41 | 2,296,074 | 252,200 | 1,202,172 | 3,750,446 | 6,345,885 | | 1999 | 9,452,972 | 53 | 6,196,914 | 481,600 | 1,625,364 | 8,303,878 | 17,756,850 | | 2000 | 4,727,061 | 56 | 1,827,780 | 451,300 | 1,375,488 | 3,654,568 | 8,381,629 | | 2001 | 5,280,538 | 62 | 1,095,348 | 267,000 | 1,830,360 | 3,192,708 | 8,473,246 | | 2002 | 1,407,621 | 38 | 703,884 | 335,661 | 1,263,918 | 2,303,463 | 3,711,084 | | 2003 | 3,348,453 | 37 | 1,686,804 | 3,676,146 | 1,831,170 | 7,194,120 | 10,542,610 | | 2004 | 4,786,694 | 37 | 5,500,134 | 5,396,592 | 1,939,374 | 12,836,100 | 17,622,831 | | 25 Year Average | 8,945,279 | 53 | 5,075,029 | 587,498 | 1,556,137 | 7,218,664 | 16,163,946 | | 1985-94 Average | 9,572,717 | 54 | 5,512,064 | 215,537 | 1,689,344 | 7,416,945 | 16,989,662 | | 1995-04 Average | 6,067,965 | 48 | 3,229,997 | 1,160,108 | 1,428,275 | 5,818,379 | 11,886,352 | ^a Tower count ^b Aerial survey estimates [°] Tower count for Alagnak River in 2003 and 2004 As the nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering sound use of our land and water resources; protecting our fish, wildlife, and biological diversity; preserving the environmental and
cultural values of our national parks and historical places; and providing for the enjoyment of life through outdoor recreation. The department assesses our energy and mineral resources and works to ensure that their development is in the best interests of all our people by encouraging stewardship and citizen participation in their care. The department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. LACL D-29, August 2005